Grüne IT: Energiespar-Chips als Beitrag zur CO2-Einsparung

Die drängende Energiewende, die Reduktion von CO2-Emissionen und der steigende Energiebedarf sind fordernde Themen unserer Zeit. Die Effizienz ist dabei so wichtig wie noch nie. Energie effizient zu erzeugen, zu steuern und zu nutzen, ist ein entscheidender Hebel für die Digitalisierung und Dekarbonisierung. Intelligente Technologien und neue Halbleitermaterialien wie Galliumnitrid (GaN) spielen hier eine Schlüsselrolle. GaN-Leistungshalbleiter bringen mehr Leistung auf kleinem Raum, sparen Energie und minimieren so den CO2-Fußabdruck.

Ein europäisches Forscherteam entwickelte kompakte, kostengünstige Energiespar-Chips aus dem Halbleitermaterial Galliumnitrid. Das eröffnet eine neue Dimension der Energieeffizienz beim kabellosen Laden von Elektroautos, bei der Einspeisung erneuerbarer Energien ins Stromnetz und ermöglicht einen nachhaltigen 5G-Rollout.

“Ultimate GaN” : Forschung bringt mehr Effizienz im Design und Prozess

In der Halbleitertechnologie kann der Rohstoff GaN, der als Nebenprodukt bei der Aluminiumherstellung anfällt, sein volles physikalisches Potenzial entfalten. GaN-Halbleiter sind hitzebeständiger, bringen mehr Leistung, wandeln Energie viel schneller und haben damit weniger Energieverluste. Durch die Energieeinsparungen kommt GaN auch der Umwelt zugute, da weniger Emissionen anfallen. Die Vorteile kommen bereits bei LED-Leuchten und bei Netzteilen in der Unterhaltungselektronik zum Tragen. Verglichen mit anderen Ladelösungen reduziert GaN hier die Energieverluste um 21 Prozent. Durch die Forschungen im Projekt „UltimateGaN“ werden leistungsstarke GaN-Chips jetzt auch für weitere Anwendungen nutzbar.

Im „UltimateGaN“ Projekt wurden leistungsstarke GaN-Schichten auf 200-Millimeter Silizium-Wafern realisiert und in verschiedenen Anwendungen getestet. In Kombination mit fortschrittlichen Metallisierungsverfahren, optimierten Aufbau- und Verbindungstechnologien sowie Designanpassungen gelang es, den gesamten GaN-Systemaufbau des GaN-Mikrochips zu verbessern und die Größe weiter zu verkleinern. Die technologischen Vorteile von GaN werden mit prozesstechnischen Verbesserungen im Fertigungsverfahren verknüpft.

Unterm Strich bedeutet das: kleinere Bauformen bringen kleinere Gehäuse, weniger Material- und Ressourcenverbrauch, eine bessere Produktivität in der Herstellung und damit geringere Fertigungskosten. Am Ende profitieren davon viele Anwendungen weltweit, um Energie zu sparen und den CO2-Fußabdruck zu minimieren. Im Projekt wurden konkret drei Anwendungen adressiert: Smart Mobility, Smart Grid und 5G-Kommunikationsnetze.

Smart Mobility: Kabelloses Laden von E-Autos

GaN-Bauelemente sind gerade bei effizienzgetriebenen Anwendungen wie etwa beim Laden von E-Autos von großem Nutzen. Wenn dies dabei auch kabellos erfolgt, steigt gleichzeitig auch der Bedienkomfort. Das Forscherteam entwickelte dazu ein bidirektionales 3,6-kW-Batterieladegerät mit GaN-Leistungswandlern. Der Prototyp erzielte einen Effizienzgrad von bis zu 96 Prozent, was bisherige Wirkungsgrade von 90 bis 93 Prozent klar übertrifft. Die zugrundeliegende induktive Ladetechnik funktioniert auch bei Schnee und Eis und ist beispielsweise auch dort praktisch, wo sich Fahrzeuge oft aufhalten, z. B. beim Supermarkt oder bei Stadtparkplätzen.

Quelle: Infineon

Smart Grid: Integration erneuerbarer Energien

Großes Potenzial liegt auch bei Energien aus Sonne und Wind und deren Integration ins Stromnetz. Intelligente Leistungselektronik minimiert Energiewandlungsverluste und holt sozusagen mehr Strom heraus. Im Projekt wurde dazu ein modulares GaN-Wandlungskonzept für die Integration von Microgrids – also lokalen Teilnetzen aus Photovoltaik, Wind und Speichertechnologien – in das Smart Grid umgesetzt. Mehr als 3000 Stunden Feldtests belegen, dass die GaN-Bauelemente beste Zuverlässigkeit bei gleichzeitig höchsten Wirkungsgraden von bis zu 98,4 Prozent aufweisen und damit die Energiewende entscheidend voranbringen.

Energieeffizienz ist eine der weltweit größten Ressourcen, um CO2 zu sparen. Jeder Prozentpunkt zählt und ist ein Beitrag zum europäischen Green Deal. Leistungshalbleiter aus Galliumnitrid sind dabei echte Schrittmacher der Nachhaltigkeit!”

Sabine Herlitschka, Vorstandsvorsitzende der Infineon Technologies, eineM der heimischen Projektpartner.

5G-Kommunikation: Schneller Datentransfer

Die Forschungen legen auch die Basis für GaN-Verstärkermodule und damit für einen schnellen Datentransfer beispielsweise für das blitzschnelle Videostreamen oder die Kommunikation im Internet der Dinge. Da die energieeffizienten 5G-Verstärker aus GaN auch kostengünstiger sind, wird ein schnellerer, energieeffizienter und klimaschonender 5G-Rollout ermöglicht.

EU Spitzenforschung: der österreichische Beitrag

Das europäische Projekt „UltimateGaN“ (Research for GaN technologies, devices and applications to adress the challenges of the future GaN roadmap) lief insgesamt dreieinhalb Jahre. Das Projektvolumen von 48 Millionen Euro wurde aus Investitionen der Industrie, Förderungen der neun beteiligten Länder sowie dem ECSEL Joint Undertaking (Electronic Components and Systems for European Leadership) finanziert. Die heimischen Projektpartner sind:

Austria Technologie & Systemtechnik AG, Infineon Technologies Austria AG, Fronius International GmbH, SAL Silicon Austria Labs, Technische Universität Graz

Scroll to top
Close
Browse Tags
Browse Authors
Cookie Consent mit Real Cookie Banner